

XXX Corso Nazionale di Aggiornamento

17 - 18 - 19 aprile Sala Congressi Hotel Mediterraneo Riccione Piazzale Roma, 3, 47838 Riccione RN

orso Nazionale Ante 2023

Direttore Scientifico Paolo Fabbrini Presidente Ante Paolo Besati

Díalísí e Tecnología "Presente e futuro della Nefrologia Italiana"

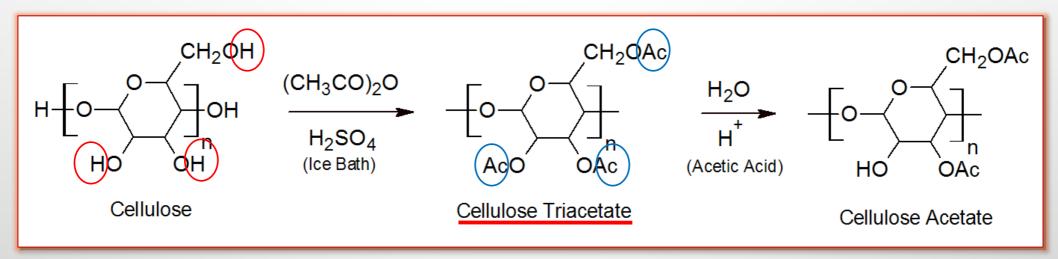
SU COSA BASIAMO OGGI LA C SCELTA DELLA MEMBRANA DIALITICA?

Dr. Massimiliano Migliori

Versilia

Non temere, o uomo dagli occhi glauchi! Erompo dalla corteccia fragile io ninfa boschereccia Versilia, perché tu mi tocchi.

The quality of treatment is strongly dependent on the performance of the dialyzer


natural polymers

synthetic polymers

natural polymers

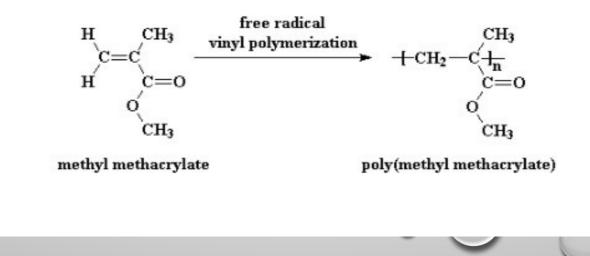
Cuprophan®: cellulose dissolved in cuprammonium solution Another cuprammonium rayon membrane with nearly the same chemical and physical structures was developed in Japan

These membranes were also called **regenerated cellulosic (RC)** membrane since they were cast from cellulose or cotton fibers. Chemical modifications were made for RC membranes mostly because of improving their biocompatibility by replacing their hydroxyl group(s) with acetate group(s).

They are called cellulose acetate (CA), cellulose diacetate (CDA), and cellulose triacetate (CTA) in accordance with the number of introduction of acetate groups to the cellulose backbone They have much higher solute and hydraulic permeabilities as well as better biocompatibility than original RC membranes The first **synthetic polymeric** membrane was developed in **1969** by Rhône-Poulenc (France) and was named **AN-69®**, since the main material of the membrane was **acrylonitrile (AN**).

It was also the first dialyzer sterilized by the gamma-ray irradiation.

Fig. 1. Chemical formula for AN69 copolymer, consisting of acrylonitrile and sodium methallylsulfonate.

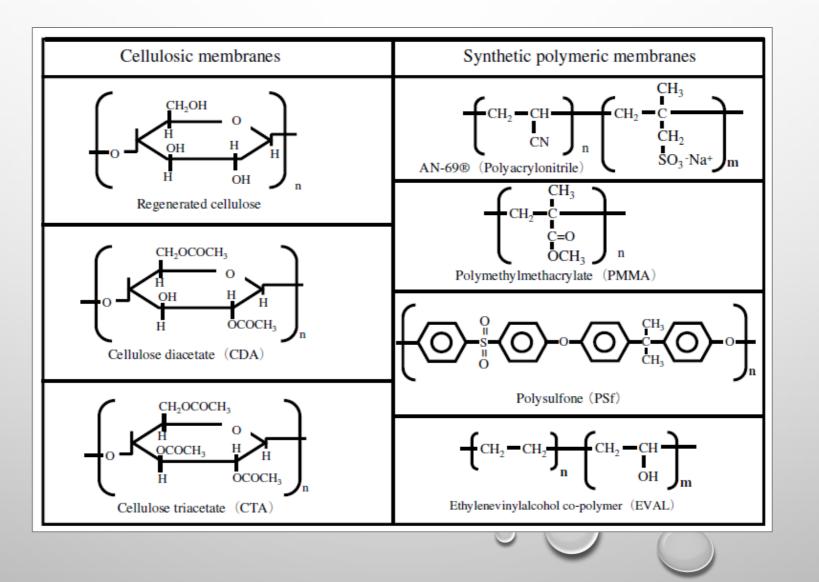

$$\begin{bmatrix} CH_2 - CH_{-} \\ I \\ CN \end{bmatrix} \begin{bmatrix} CH_2 - CH_{-} \\ CH_2 - CH_{-} \\ I \\ CH_2 \end{bmatrix}_{CH_2} = \begin{bmatrix} CH_3 \\ I \\ CH_2 \end{bmatrix}_{SO_3Na}$$

The first dialyzer with a synthetic polymeric hollow fiber membrane sterilized by gamma-ray was introduced by Toray Co. (Tokyo, Japan), in which **polymethylmethacrylate (PMMA**) was used as a main material of the membrane

Preparation:

Suspension polymerisation

Radical polymerisation


Synthetic Polymeric Membranes

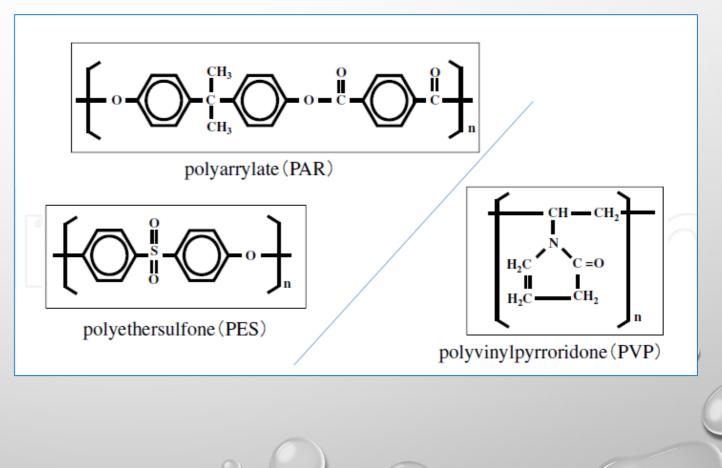
Among them, **polysulfone** (PSF) and the like (including **polyethersulfone** (PES), **polyarylethersulfone** (PAES), etc.) have the highest market share over the world.

Since these membranes are made from petroleum, they are **hydrophobic** in nature.

Then most of these membranes include so-called **hydrophilic** agent that also plays a role of **pore-forming agent** when cast.

Chemical structures of cellulosic and synthetic polymeric membranes for blood purification

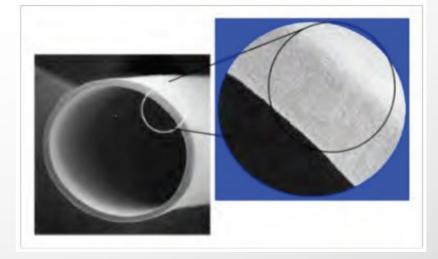
Hydrophilic agent

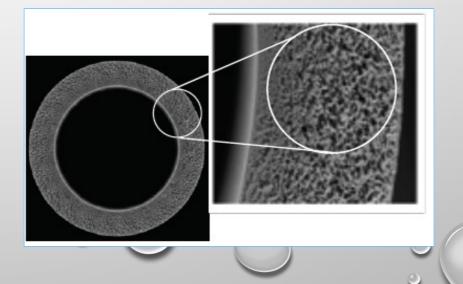

Cellulosic membranes are hydrophilic in nature, including original RC and its derivatives such as CA, CDA, and CTA in which hydroxyl group(s) are replaced by acetate group(s).

On the contrary, since **synthetic polymeric membranes** are originated from petroleum, generally speaking they are **hydrophobic in nature.** Blood coagulation usually occurs soon after blood interacts with hydrophobic materials.

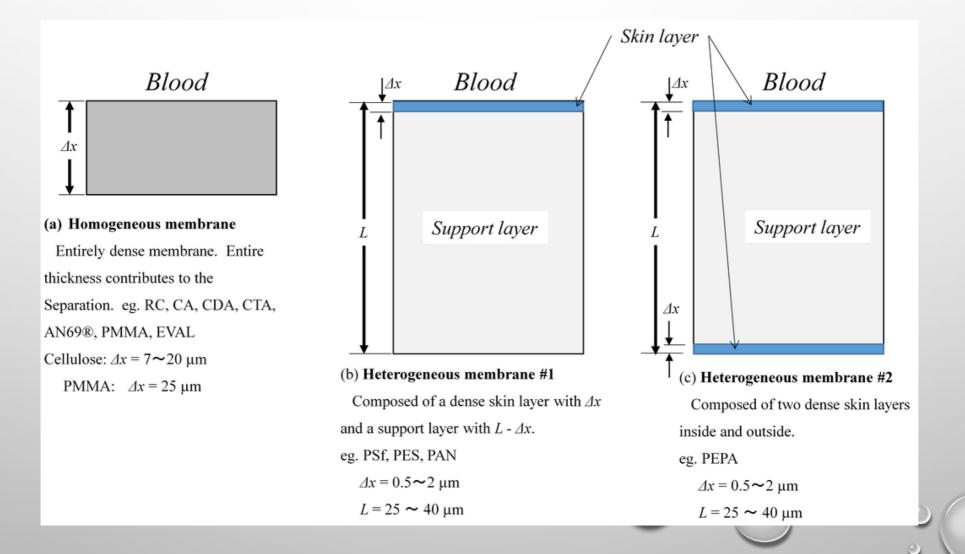
Most synthetic polymeric membranes, therefore, include so-called **hydrophilic agent such as polyvinylpyrrolidone (PVP)** to make membrane hydrophilic. PVP is also known as a **poreforming agent**

Chemical structures of polyester polymer alloy (PEPA) composed of PES and PAR with polyvinylpyrroridone (PVP).


Chemical structure of PVP together with two other polymers (polyarrylate and polyethersulfone. **PEPA** is composed of these two polymers with or without **PVP**, the former shows strong adsorptive, while the latter has strong adsorptive characteristic to various proteins due to its hydrophobicity

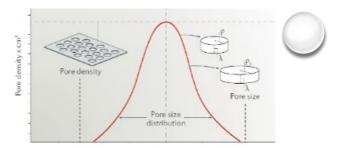


Homogeneous and Asymmetry Membrane

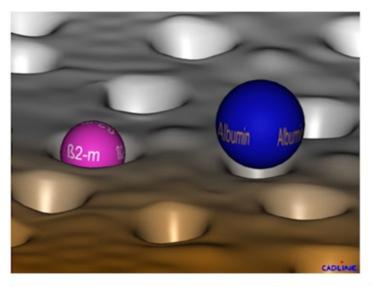

It is entirely a dense membrane and the entire thickness contributes to the transport resistance for solutes and water. Membranes of this kind are usually called "homogeneous." Besides EVAL, PMMA, and AN-69®, most cellulosic membranes are homogeneous.

A dense thin layer exists on the inner surface of the membrane, called "skin layer" from which the density is gradually decreasing in the radial direction. Since most part excluding the skin layer is known to have little resistance for solute and water transport, it is called the "support layer". The support layer, however, has an important role for the membrane to have enough mechanical strength with little resistance for transport. Membranes of this kind are called "asymmetry."

Cross-sectional views of dialysis membranes

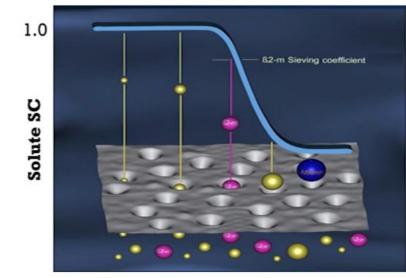

Efficiency and Flux

Efficiency: ability to achieve large small solute clearance with high blood flows (all filters are high efficiency these days)
Flux: ability to achieve high middle molecule clearance and ultrafiltration rate (determined by the average pore size)


Diffusion and Convection

Diffusion: solutes move by diffusion between blocks of fluid separated by the membrane

 Convection: solutes move en mass with a block of fluid across the membrane (more effective for moving large molecules 19/05/19

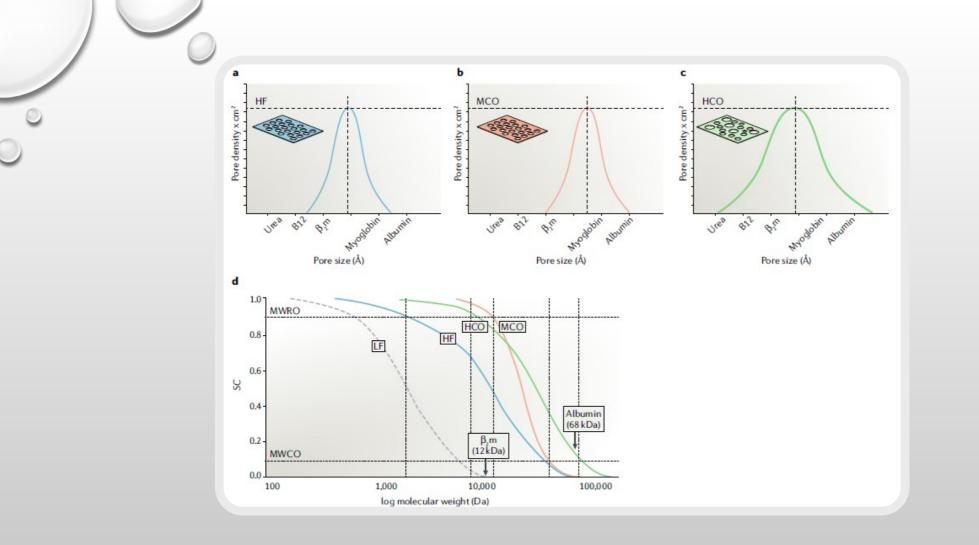


CONVECTIVE TRANSPORT PROPERTIESARE DEFINED BY THE SIEVING COEFFICIENT (SC) PROFILE

 $\begin{array}{l} \text{SC} = \text{the retention capacity of membrane} \\ \text{for a certain solute size} \\ \text{SC} = 1 \rightarrow \text{solute can pass} \\ \text{SC} = 0 \rightarrow \text{complete retention} \\ \text{Cut-off at SC=0.1} \end{array}$

Ronco C, Clark WR. Nat Rev Nephrol 2018; 14: 394-410

Molecular weight (Da)


Sieving characteristics of a membrane are given by the sieving coefficient curve

ß2-m is used as a membrane substance

GENERAL CLASSIFICATIONS AND TYPICAL PERFORMANCE OF DIALYSIS MEMBRANES

Dialyzer Type	Water Permeability K _{UF} (ml/h/mmHg´)	Sieving Coefficient for ß2-M	Sieving Coefficient for Albumin
Low-flux	< 10	-	< 0,01
High-flux	> 20	0,7 - 0,8	< 0,01
Protein leaking	5 – 50	0,9 - 1,0	0,02 - 0,03
High cut-off	110	1,0	0,2
Medium cut-off	60 - 85	1,0	0,08
	Pore size (Å)		Inner

Zweigart C et al. Int J Artif Organs 2017; 40: 328-334

PERFORMANCE CHARACTERISTICS OF HAEMODIALYSIS MEMBRANES DERIVED FROM A SUGGESTED NEW CLASSIFICATION SYSTEM.

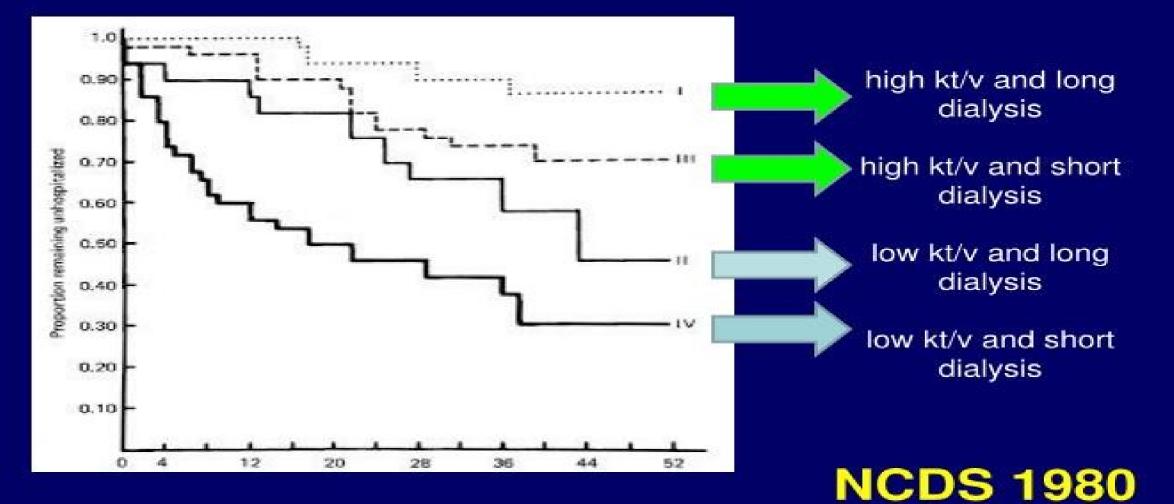
HIGH PERFORMANCĘ MEMBRANES (HPM)

hollow fiber dialyzers with an advanced level of performance

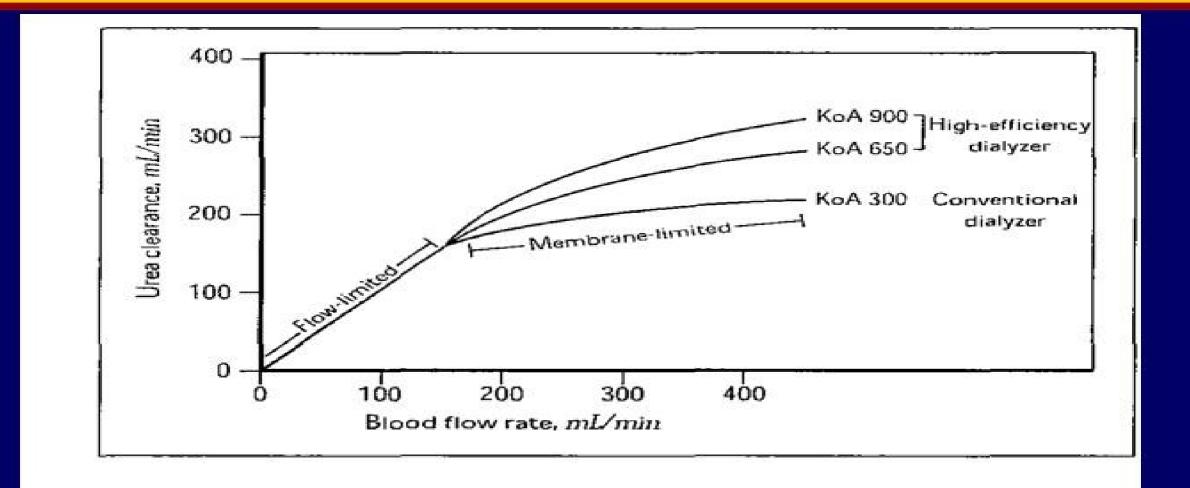
The criteria to identifie HPM:

- excellent biocompatibility
- effective clearance of target solutes
- pore size larger than conventional hemodialysis (HD) membranes

Promoting the removal of protein-bound uremic toxins, and middle to large molecular-weight solutes, including β 2-microglobulin (β 2-M).


EXAMPLES OF HIGH PERFORMANCE DIALYZERS⁶

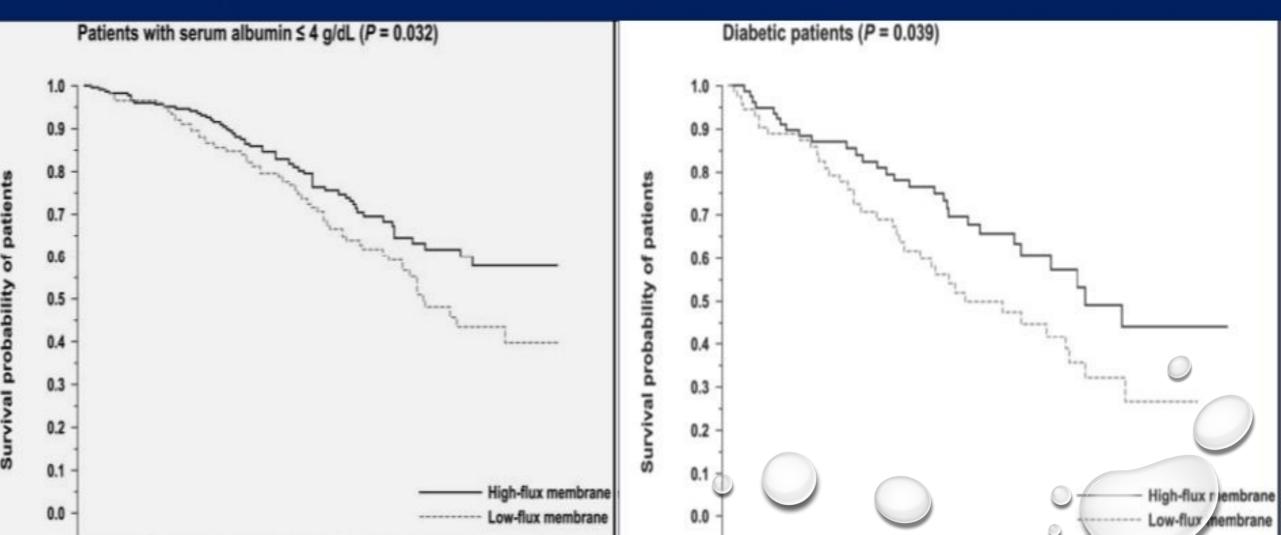
MATERIAL	ABBREVIATION	MANUFACTURER	MEMBRANE TYPE
Cellulose triacetate	CTA	Nipro	hollow fiber
Polysulfone	PSf	Asahi Kasei Kuraray Medical	hollow fiber
		Fresenius	hollow fiber
		Toray	hollow fiber
Polyethersulfone	PES	Nipro	hollow fiber
		Membrana	hollow fiber
Polymethylmethacrylate	PMMA	Toray	hollow fiber
Polyester polymer alloy	PEPA	Nikkiso	hollow fiber
Ethylene vinyl alcohol copolymer	EVAL	Asahi Kasei Kuraray Medical	hollow fiber
Polyacrylonitrile	PAN	Gambro	hollow fiber laminated



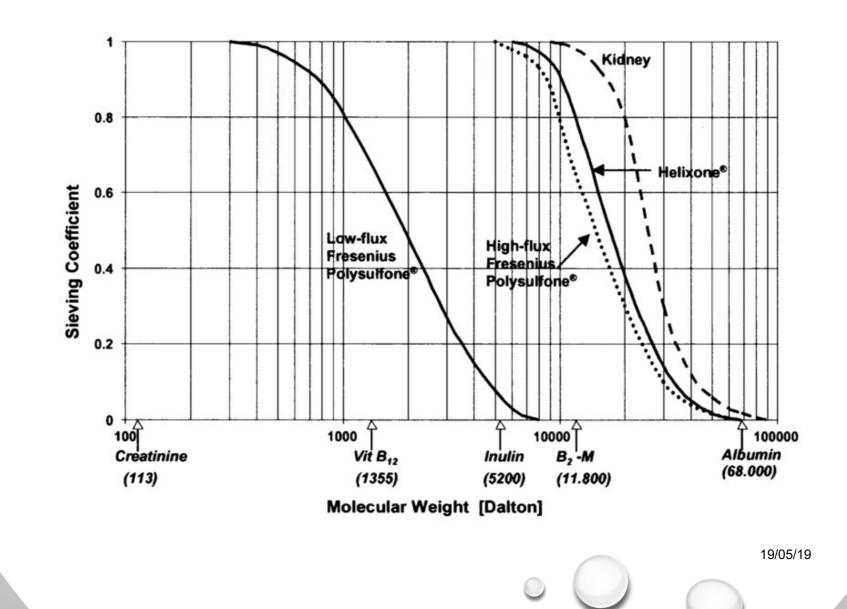
First Randomised Controlled Trial In Dialysis

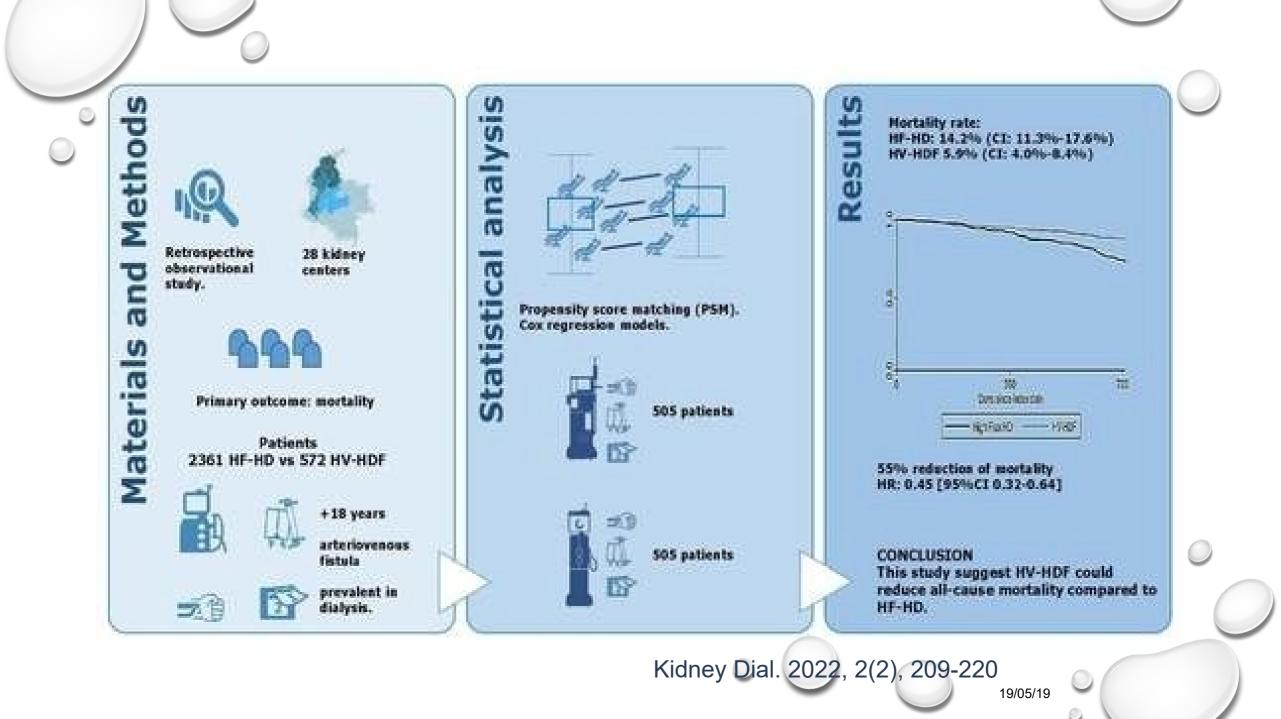
Predialysis urea 38 vs 26 mmol. Dialysis 2.5-35h vs 4.5-5 h

Blood flow and Clearance



Dialyzer mass transfer-area coefficient (KoA) for area


HEMO study: Subgroup analysis


- In high-flux there is significant reduction in RR of death (20%) from cardiac causes and combined outcome of first hospitalization or death from cardiac cause
- Longer dialysis duration
 - High-flux dialysis for > 3.7 year has 32% lower risk
 of death when compared with low-flux

MPO study: Results Control Locatelli, F. et al. J Am Soc Nephrol 2009;20:645-654

	Randomized	Clinical Trials	
		C*	
FRENCHIE	CONTRAST	TURKISH	ESHOL
420 patients	714 patients	780 patients	906 patients
Age 76 ± 6 years	Age 64 ± 13 years	Age 56 ± 14 years	Age 65 ± 14 years
KIDNEY INT 2017	JASN 2012	NDT 2013	JASN 2013
ON LINE HDF	ON LINE HDF	ON LINE HDF	ON LINE HDF
VS. HIGH FLUX HD	VS. LOW FLUX HD	VS. LOW FLUX HD	VS. HIGH FLUX HD
Intradialytic tolerance and Survival		Survival and Cardiovascular events	Survival
Follow-up 2 years	Follow-up 3 years	Follow-up 2 years	Follow-up 2 years

19/05/19

See Nefrologia 2014;34(4):520-5 and Nefrologia 2014;34(6):807-8

Hypersensitivity reactions to synthetic haemodialysis membranes — an emerging issue?

M. Antonia Álvarez-de Lara, Alejandro Martín-Malo Servicio de Nefrología. Hospital Universitario Reina Sofía. Córdoba (Spain) Nefrologia 2014;34(6):698-702

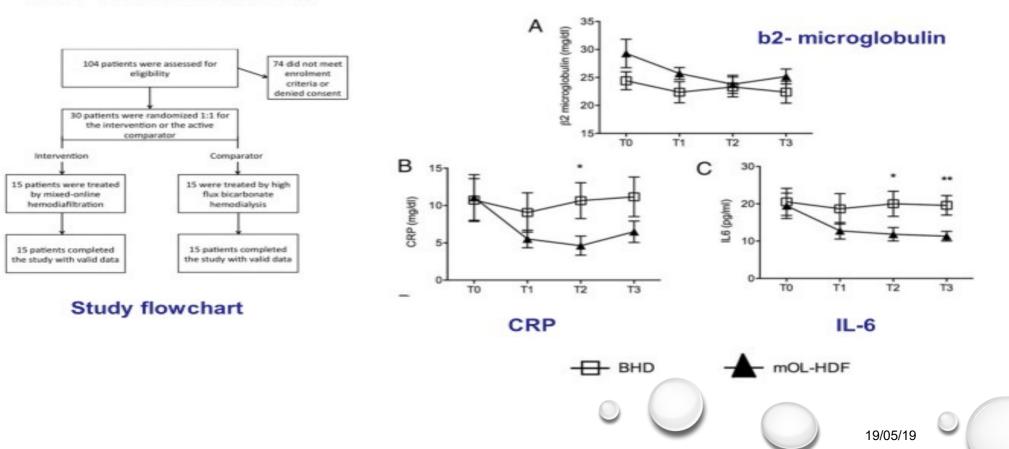
Prevalence of a severe reaction:

- 0.25% in the total population on dialysis
- 0.5% in patients treated with synthetic membranes
- 1.1% in patients with AN69
- 4.9% in patients treated with AN69 membranes and ACE inhibitors

Asymmetric Cellulose Triacetate Membrane

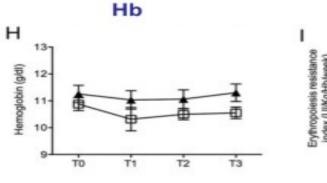
A new generation of dialysers with asymmetric CTA membranes have been designed with an increase in hydraulic permeability

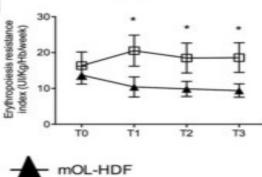
Properties:


- Lower risk of hypersensitivity
- A lower platelet count decrease
- High permeability and filtration performance.

The ATA membrane dialyzer is a safe polyvinylpyrrolidone-and BPA-free product.

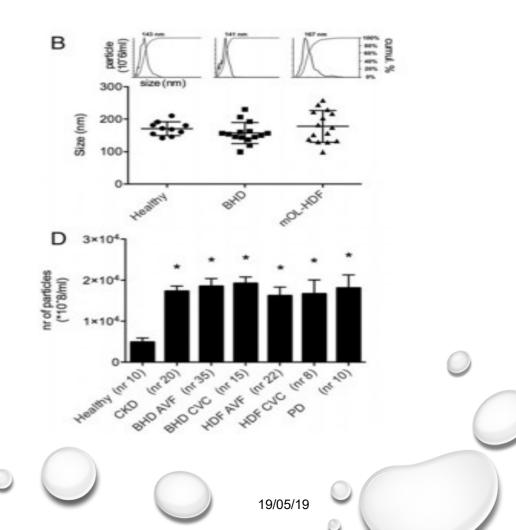
Online Hemodiafiltration Inhibits Inflammation-Related Endothelial Dysfunction and Vascular Calcification of Uremic Patients Modulating miR-223 Expression in Plasma Extracellular Vesicles


Claudia Cavallari,⁸⁻¹ Sergio Dellepiane,^{7,1} Valentina Fonsato,⁸ Davide Medica,[†] Marita Marengo,[‡] Massimiliano Migliori,[§] Alessandro D. Quercia,^{§,1} Adriana Pitino,⁸ Marco Formica,[‡] Vincenzo Panichi,[§] Stefano Maffei,[†] Luigi Biancone,[†] Emanuele Gatti,[#] Ciro Tetta,^{**} Giovanni Camussi,[†] and Vincenzo Cantaluppi^{§,1}

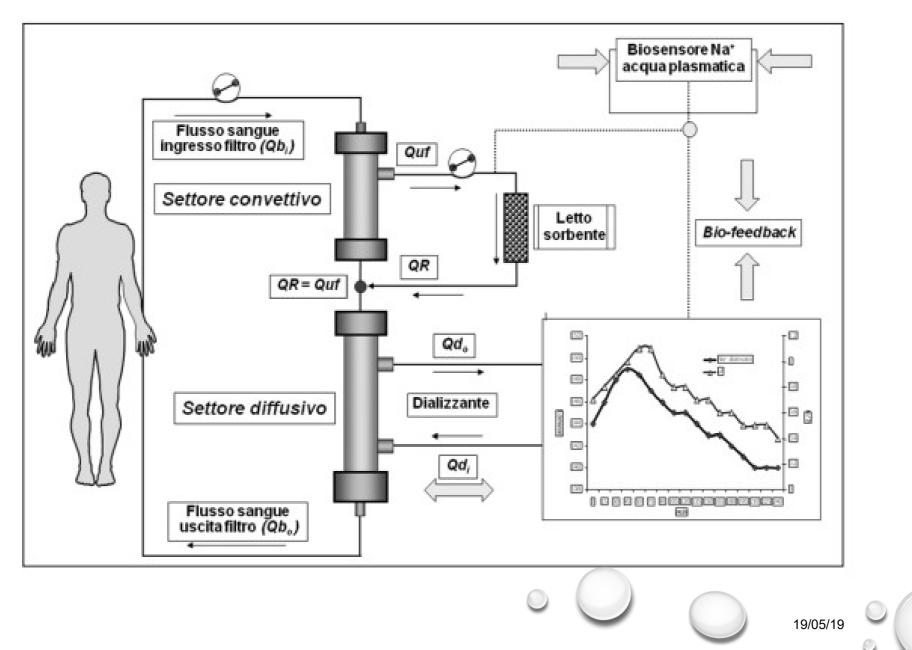

A Immunology

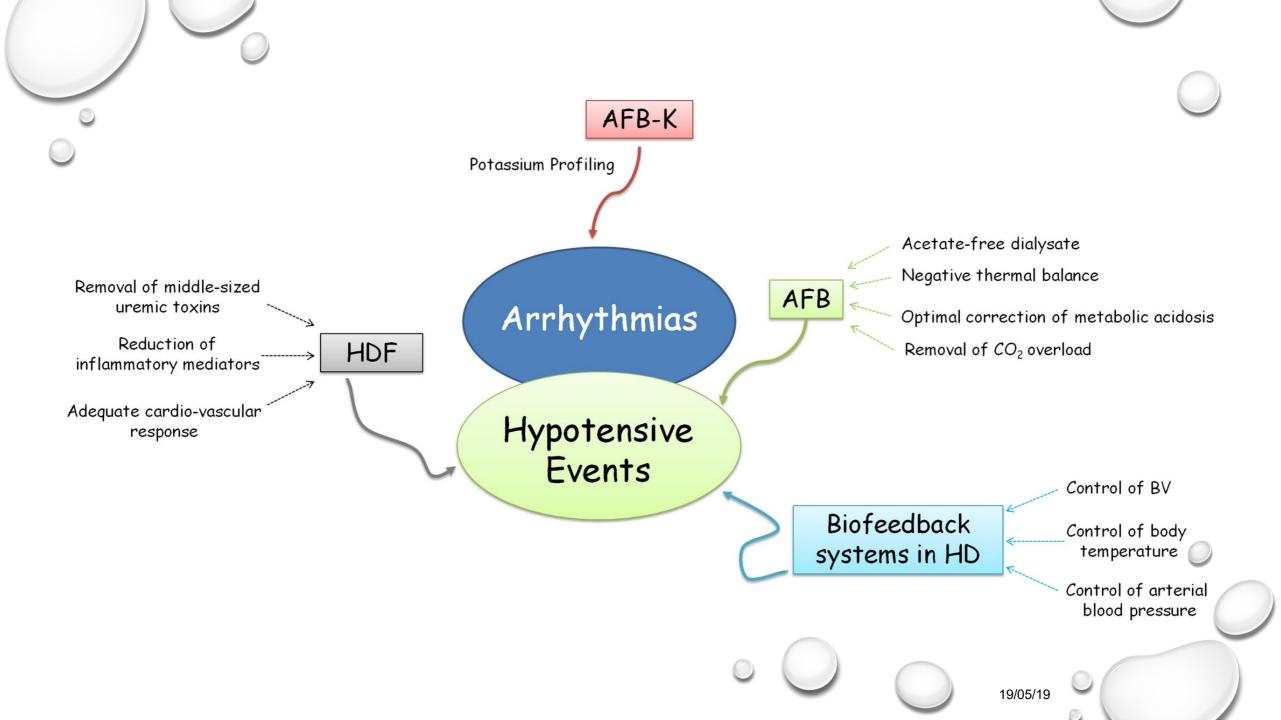
Online Hemodiafiltration Inhibits Inflammation-Related Endothelial Dysfunction and Vascular Calcification of Uremic Patients Modulating miR-223 Expression in Plasma Extracellular Vesicles

Claudia Cavallari,⁸⁻¹ Sergio Dellepiane,^{7,3} Valentina Fonsato,⁸ Davide Medica,⁷ Marita Marengo,[†] Massimiliano Migliori,⁵ Alessandro D. Quercia,^{5,3} Adriana Pitino,⁸ Marco Formica,[‡] Vincenzo Panichi,⁵ Stefano Maffei,[†] Luigi Biancone,[†] Emanuele Gatti,[#] Ciro Tetta,⁴⁺ Giovanni Camussi,[†] and Vincenzo Cantaluppi^{5,3}



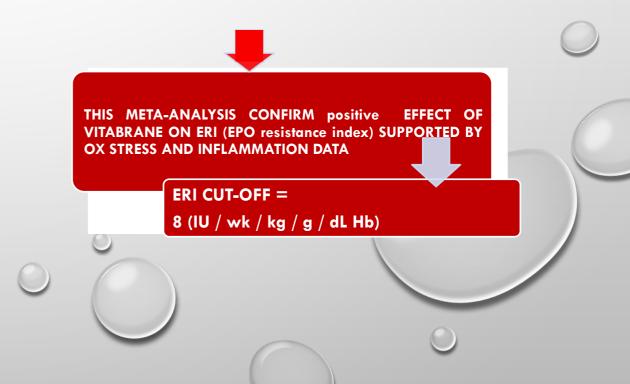
- BHD




ERI

HFR Aequilibrium

In-Depth Review


Blood Purif 2017;43:101–122 DOI: 10.1159/000453444

Received: September 13, 2016 Accepted: November 15, 2016 Published online: December 14, 2016

Effects of Vitamin E-Coated versus Conventional Membranes in Chronic Hemodialysis Patients: A Systematic Review and Meta-Analysis

Graziella D'Arrigo^a Rossella Baggetta^a Giovanni Tripepi^a Francesco Galli^b Davide Bolignano^a

^aCNR – Institute of Clinical Physiology, Reggio Calabria, and ^bNutrition and Clinical Biochemistry Laboratory, Department of Pharmaceutical Sciences, University of Perugia, Perugia, Italy

$ \begin{array}{c c c c c c c c c c c c c c c c c c c $									
Active theory of the second state of the seco	Vit	amin-E fi	lter	Con	ventional			Std.Mean difference	Std.Mean difference
Baragetti, 2006 3,750 629 1 8 4,250 453 1 8 33% -0.86 [-1.90, 0.18] Mandolfo, 2012 101 57 8 135 59 8 3.5% -0.86 [-1.90, 0.18] Huraib, 2000 4,630 2,620 10 7,850 4,069 10 4,0% -0.96 [-1.90, 0.18] Huraib, 2000 4,630 2,620 10 7,850 4,069 10 4,0% -0.96 [-1.90, 0.18] Huraib, 2000 4,630 2,620 10 7,850 4,069 10 4,0% -0.97 [-1.25, 0.52] Satoh, 2001 71,4 313 10 75.9 433 10 4,4% -0.37 [-1.25, 0.52] Satoh, 2001 71,4 313 10 75.9 433 10 4,4% -0.37 [-1.25, 0.52] Satoh, 2001 71,4 313 10 75.9 433 10 4,4% -0.31 [-0.99, 0.76] Westhuyzen, 2003 8,250 3,175,4 11 7,000 2,309,4 11 4,6% 0,43 [-0.41, 1.28] Clermont, 2001 88 2,216 5,148 2,596 15 6,0% 0.55 [-0.17, 1.27] Kobayashi, 2003 4,235 3,103 17 6,118 2,190 17 6,3% -0.68 [-1.38, 0.01] Ubberti, 2001 10 46 5 38 104 465 38 10.9% 0.00 [-0.48, 0.83] Panichi, 2011 6,983 5,679 54 6,983 5,679 54 13.0% 0.00 [-0.38, 0.38] Cruz, 2008 6,390 5,679 172 7,762 5,865 172 18,6% -0.24 [-0.45, 0.03] Panichi, 2011 6,983 5,679 54 6,983 5,679 54 13.0% 0.00 [-0.38, 0.38] Cruz, 2008 6,390 5,679 172 7,762 5,865 172 18,6% -0.24 [-0.45, 0.03] Heterogeneity: Tau ² = 0.05; Chi ² = 22,15, df. = 15 (p = 0.10; l ² = 32% Test for overall effect Z = 1.01 (p = 0.31) a ERI ERI ERI EXI Mean SD Total Mean SD Total Weight Conventional filter Std Mean difference N, random, 95% CI Total (95% CI) 177 163 100.0% -0.37 [-0.70, -0.03] Sanaka, 2013 1 2 12 74 12 11 69 310 0.0% -0.37 [-0.70, -0.03] Heterogeneity: Tau ² = 0.05; Chi ² = 6.15, df = 3 (p = 0.10); l ² = 51%.	Mean	SD	Total	Mean	SD	Total	Weight	IV, random, 95% CI	IV, random, 95% Cl
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	0.38	0.19	7	0.5	0.3	7	3.2%	-0.45 [-1.51, 0.62]	
$ \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c}$	3,750	629.1	8	4,250	453.1	8	3.3%	-0.86 [-1.90, 0.18]	
Huraib. 2000 4,630 2,620 10 7,850 4,069 10 40% -0.09 [-1.83,0.03] Takoufi, 2010 133.8 93.8 9 136.3 84.8 9 40% -0.037 [-1.25,0.52] Satoh, 2001 7,14 31.3 10 75.9 43.3 11 44.% -0.11 [-0.99,0.76] Satoh, 2001 7,14 31.3 10 75.9 43.3 10 44.% -0.11 [-0.99,0.76] Satoh, 2003 95.1 26.3 10 97.4 28.3 10 44.% -0.11 [-0.99,0.76] Westhuyzen, 2003 8,250 3,175.4 11 7,000 2,309.4 11 4.6% 0.43 [-0.41, 1.28] Morimoto, 2005 6,563 2,459 16 5,143 2,596 15 6,07% 0.05 [-0.17, 1.27] Morimoto, 2005 6,563 2,459 16 5,143 2,596 15 6,07% 0.05 [-0.17, 1.27] Morimoto, 2003 6,250 3,175.4 11 7,000 2,309.4 13,0% 0.00 [-0.45, 0.48] Morimoto, 2005 6,563 2,459 16 5,143 2,596 15 6,07% 0.05 [-0.17, 1.27] Morimoto, 2008 6,390 5,679 54 6,983 5,679 54 13,0% 0.00 [-0.45, 0.48] Panichi, 2011 6,983 5,679 54 6,983 5,679 54 13,0% 0.00 [-0.45, 0.48] Panichi, 2011 6,983 5,679 54 6,983 5,679 54 13,0% 0.00 [-0.45, 0.43] Total (95% CI) 404 403 100.0% -0.11 [-0.31, 0.10] Heterogeneity: Tau ² = 0.05; Chi ² = 22.15, d.f. = 15 (p = 0.10); l ² = 32% Test for overall effect: Z = 1.01 (p = 0.31) a ERI ERI ERI ERI ERI ERI ERI ERI	101	57	8	135	59	8	3.5%	-0.55 [-1.56, 0.45]	
Takouli, 2010 Takouli, 2010 Takouli, 2010 Takouli, 2010 Takouli, 2010 Takouli, 2010 Takouli, 2010 Takouli, 2010 Takouli, 2010 Triolo, 2003 Triolo, 2005 Triolo, 2005 Triolo	111.7	66.3	8	104.4	61.3	8		0.11 [-0.87, 1.09]	
Huraib. 2000 Huraib. 2000 H	4,630	2,620	10	7,850	4,069	10		-0.90 [-1.83, 0.03]	
Satoh, 2001 71,4 313 10 75,9 43,3 10 44% -0.11 [-0.99, 0.76] Triolo, 2003 95,1 26,3 10 97,4 28,3 10 44% -0.08 [-0.96, 0.00] Westhuyzen, 2003 8,250 3,175,4 11 7,000 2,309,4 11 46% 0,43 [-0.41, 1.28] Clermont, 2001 88 22 16 72 15 16 5,9% 0,83 [0.10, 1.55] Morimoto, 2005 6,563 2,459 16 5,143 2,596 15 6,0% 0,05 [-0.17, 1.27] Kobayashi, 2003 4,235 3,103 17 6,118 2,190 17 6,3% -0.68 [-1.38, 0.01] Usberti, 2011 6,983 5,679 54 6,983 5,679 54 13.0% 0,00 [-0.45, 0.45] Panichi, 2011 6,983 5,679 54 6,983 5,679 54 13.0% 0,00 [-0.38, 0.38] Cruz, 2008 6,390 5,679 172 7,762 5,865 172 18.6% -0.24 [-0.45, 0.03] Total (95% CI) 404 404 403 100.0% -0.11 [-0.31, 0.10] Heterogeneity: Tau ² = 0.05; Chi ² = 22.15, df. = 15 (p = 0.10); l ² = 32% Test for overall effect Z = 1.01 (p = 0.31) a ERI ERI ERI ERI ERI ERI ERI ERI	133.8	93.8	9	136.3	84.8	9			
Triolo, 2003 95.1 20.3 10 97.4 28.3 10 4.4% $-0.08 [-0.96, 0.80]$ Westhuyzen, 2003 8.250 3,175.4 11 7,000 2,309.4 11 4.6% $0.43 [-0.41, 1.28]$ Clermont, 2001 88 22 16 72 15 16 5.9% $0.83 [0.10, 1.55]$ Morimoto, 2005 6.563 2,459 16 5,143 2,596 15 6.0% $0.55 [-0.71, 1.27]$ Kobayashi, 2003 4,235 3,103 17 6,118 2,190 17 6.3% $-0.68 [-1.38, 0.01]$ Usberti, 2002 104 65 38 10.4 65 38 10.9% $0.00 [-0.45, 0.45]$ Panichi, 2011 6,983 5,679 54 6,983 5,679 54 13.0% $0.00 [-0.38, 0.38]$ Total (95% CI) 404 403 100.0% $-0.11 [-0.31, 0.10]$ Heterogeneity: Tau ² = 0.05; Chi ² = 22.15, d.f. = 15 (p = 0.10); l ² = 32% Test for overall effect Z = 1.01 (p = 0.31) a ERI ERI ERI ERI ERI ERI ERI ERI	4,690	1,922		5,740	3,341				
Westhuyzen, 2003 8,250 3,175,4 11 7,000 2,309,4 11 4,6% 0,43 [-0.41, 1.28] Clermont, 2001 88 22 16 72 15 16 5,9% 0,83 [0.10, 1.55] Morimoto, 2005 6,563 2,459 16 5,143 2,596 15 6,0% 0,55 [-0.17, 1.27] Kobayashi, 2003 4,235 3,103 17 6,118 2,190 17 6,3% -0.68 [-1.38, 0.01] Usberti, 2002 104 65 38 104 65 38 10.9% 0,00 [-0.38, 0.38] Cruz, 2008 6,390 5,679 172 7,762 5,865 172 18,6% -0.24 [-0.45, 0.03] Total (95% Cl) 404 403 100.0% -0.11 [-0.31, 0.10] ERI ERI ERI ERI ERI ERI ERI ERI			10	75.9	43.3			-0.11 [-0.99, 0.76]	e
Clermont, 2001 88 22 16 72 15 16 5.9% 0.83 [0.10, 1.55] Morimoto, 2005 6.563 2.459 16 5,143 2.596 15 6.0% 0.55 [-0.17, 1.27] Morimoto, 2003 4.235 3,103 17 6,118 2.190 17 6.3% -0.68 [-138, 0.01] Usberti, 2002 104 65 38 104 65 38 10.9% 0.00 [-0.45, 0.45] Panichi, 2011 6.983 5,679 54 6.983 5,679 54 13.0% 0.00 [-0.45, 0.45] Panichi, 2011 6.983 5,679 172 7,762 5,865 172 18.6% -0.24 [-0.45, 0.03] Total (95% CI) 404 404 403 100.0% -0.11 [-0.31, 0.10] ERI ERI ERI ERI ERI ERI ERI ERI									
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$									
Kobayashi, 2003 4,235 3,103 17 6,118 2,190 17 6,3% 6,3% -0.68 [-1.38, 0.01] 0.00 -0.024 [-0.45, 0.45] 0.00 -0.024 [-0.45, 0.45] 0.00 -0.024 [-0.45, 0.03] -0.68 [-1.38, 0.01] 0.00 -0.024 [-0.45, 0.45] 0.00 -0.024 [-0.45, 0.03] -0.68 [-1.38, 0.01] 0.00 -0.024 [-0.45, 0.03] -0.68 [-1.38, 0.01] 0.00 -0.024 [-0.45, 0.03] -0.024 [-0.45, 0.03] -0.024 [-0.45, 0.03] -0.024 [-0.45, 0.03] -0.024 [-0.45, 0.03] -0.024 [-0.45, 0.03] -0.024 [-0.45, 0.03] -0.024 [-0.45, 0.03] -0.024 [-0.45, 0.03] -0.01 2 2 -1.00 1 2 2 -1.01 0.00% -0.011 2 2 -2 -1 0 0.01 2 2 -2 -1 0 0									
Usberti, 2002 104 65 38 104 65 38 10.9% 0.00 I.035, 0.451 Panichi, 2011 6,983 5,679 54 6,983 5,679 54 13.0% 0.00 I.04, 0.45, 0.451 Panichi, 2011 6,983 5,679 172 7,762 5,865 172 18.6% -0.24 [-0.45, 0.03] Total (95% CI) 404 403 100.0% -0.11 [-0.31, 0.10] -2 -1 0 1 2 Favours (vitamin-E filter Conventional filter Study or subgroup Mean SD Total Mean SD Total Meight Nr andom, 95% CI Andrulii, 2010 5.3 1.77 54 10.2 1.8 54 3.06% -0.51 [-0.89, -0.18] Mr andom, 95% CI Nr andom, 95% CI Nr andom, 95% CI Andrulii, 2010 5.3 1.78 9 7 2.4 10 10.1% -0.05 [-0.89, -0.18] -0.51 [-0.89, -0.18] -0.51 [-0.89, -0.13] -0.51 [-0.89, -0.16] -0.51 [-0.99, -0.13] -0.51 [-0.00, -0.06] <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>									
Panichi, 2011 6,983 5,679 54 6,983 5,679 54 13.0% Cruz, 2008 6,390 5,679 172 7,762 5,865 172 18.6% -0.24 [-0.45, 0.03] Total (95% CI) 404 403 100.0% -0.11 [-0.31, 0.10] Heterogeneity: Tau ² = 0.05; Chi ² = 22.15, d.f. = 15 (p = 0.10); l ² = 32% Test for overall effect Z = 1.01 (p = 0.31) a ERI ERI Study or subgroup Nean SD Total Mean SD Total Weight N, random, 95% CI Andrulli, 2010 53 1.78 9 7 2.4 10 10.1% -0.76 [-1.70, 0.18] Panichi, 2011 93 1.7 54 10.2 1.8 54 30.6% -0.51 [-0.89, -0.13] Sanaka, 2013 1.2 1.2 74 1.2 1.1 67 34.1% 0.00 [-0.33, 0.33] Sanaka, 2013 1 0.7 40 1.4 0.8 32 25.2% -0.53 [-1.00, -0.06] Total (95% CI) 177 163 100.0% -0.37 [-0.70, -0.03] Heterogeneity: Tau ² = 0.06; Chi ² = 6.15, d.f. = 3 (p = 0.10); l ² = 51%									
Study or subgroup Vitamin-E filter Conventional filter Std. Mean difference Std. Mean difference Study or subgroup Vitamin-E filter Conventional filter Std. Mean difference Nr. andom, 95% Cl Andruli, 2010 53 1.78 9 7 2.4 100.0% -0.51 [-0.89, -0.18] Panichi, 2011 93 1.7 54 10.2 1.8 54 30.6% -0.51 [-0.89, -0.18] Sanaka, 2013 1.2 1.2 7.4 1.2 1.1 67 34.1% 0.00 [-0.33, 0.33] Sanaka, 2013 1 0.7 40 1.4 0.8 32 2.5.2% -0.51 [-0.09, -0.05] Heterogeneity: Tau ² 0.06; Chi ² = 6.15, d.f. = 3 (p = 0.10); l ² = 51% 100.0% -0.37 [-0.70, -0.03] 0.00 [-0.33, 0.33]									
Study or subgroup Vitamin-E filter Conventional filter Mean SD Total Std. Mean Gifference RN Vitamin-E filter Conventional filter Mean SD Total Weight N. random, 95% Cl RN Vitamin-E filter Conventional filter Mean SD Total Weight N. random, 95% Cl RN Vitamin-E filter Conventional filter Mean SD Total Weight N. random, 95% Cl Panichi, 2011 5.3 1.78 9 7 2.4 10 10.1% -0.51 [-0.89, -0.18] Sanaka, 2013 1.2 1.2 7.4 1.2 1.1 67 34.1% 0.00 [-0.33, 0.33] Sanaka, 2013 1 0.7 40 1.4 0.8 32 25.2% -0.53 [-1.00, -0.06] Total (95% Cl) 177 163 100.0% -0.37 [-0.70, -0.03] 0.01 [-0.37, 0.00] 0.01 [-0.37, 0.00] 0.01 [-0.37, 0.00] Heterogeneity: Tau ² = 0.06; Chi ² = 6.15, d.f = 3 (p = 0.10); l ² = 51% 163 100.0% -0.37 [-0.70, -0.03] 0.01 [-0.30, 0.31]									
Heterogeneity: Tau ² = 0.05; Chi ² = 22.15, d.f. = 15 (p = 0.10); l ² = 32% Test for overall effect: Z = 1.01 (p = 0.31) a Favours (vitamin-E filter Study or subgroup Mean SD Study or subgroup Mean SD Total Mean SD Total Mean SD Total No Main: 2.17 Study or subgroup Mean Mean SD Total Mean SD Total Weight N; random, 95% Cl Andrulii, 2010 5.3 9 7 2.4 10 10 10.1% -0.76 [-1.70, 0.18] Panichi, 2011 9.3 1.7 54 10 1.4 0.3 1.2 12 74 12 1.4 13 0.0.7 14 0.8 15 1.0.7 163 100.0%	6,390	5,679	172	7,762	5,865	172	18.6%	-0.24 [-0.45, 0.03]	
Test for overall effect: Z = 1.01 (p = 0.31) -2 -1 0 1 2 Favours (vitamin-E filter Study or subgroup Mean SD Total New minime E filter Conventional filter Study or subgroup Vitamin-E filter Mean SD Total Weight V. random, 95% Cl Andrulii, 2010 53 1.78 9 7 2.4 10 10.1% -0.76 [-1.70, 0.18] Panichi, 2011 9.3 1.7 54 10.2 1.8 54 30.6% -0.51 [-0.49, -0.13] Sanaka, 2013 1.2 1.2 74 1.2 1.1 67 34.1% 0.00 [-0.33, 0.33] 1.0.7 40 1.4 0.8 32 25.2% -0.53 [-1.00, -0.06] 1.10, -0.06] 1.10, -0.06] 1.10, -0.06] 1.10, -0.06] 1.10, -0.06] 1.10, -0.06] 1.10, -0.06] 1.10, -0.06] 1.10, -0.06] 1.10, -0.06] 1.10, -0.06] 1.10, -0.06] 1.10, -0.06] 1.10, -0.06] 1.10, -0.06] 1.10, -0.06] 1.10, -0.06] 1.10, -0.06] <td< td=""><td></td><td></td><td>404</td><td></td><td></td><td>403</td><td>100.0%</td><td>-0.11 [-0.31, 0.10]</td><td></td></td<>			404			403	100.0%	-0.11 [-0.31, 0.10]	
(vitamin-E filter) (conventional) ERI Study or subgroup Vitamin-E filter Conventional filter Stul Mean difference Stul Mean difference Study or subgroup Mean SD Total Weight Nr andom, 95% Cl Stul Mean difference Nr andom, 95% Cl Andrulli, 2010 5.3 1.78 9 7 2.4 10 10.1% -0.76 [-1.70, 0.18] Panichi, 2011 9.3 1.7 54 10.2 1.8 54 30.6% -0.51 [-0.89, -0.13] Sanaka, 2013 1.2 1.2 7.4 1.2 1.1 67 34.1% 0.00 [-0.33, 0.33] 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.37 -0.07 -0.03 0.07 -0.37 [-0.70, -0.03] 0.07 0.07 -0.37 0.07 -0.37 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03				15 (p =	0.10); l² =	: 32%			-2 -1 0 1 2
Vitamin-E filter Conventional filter Std.Mean difference IV. random, 95% Cl Std.Mean difference IV. random, 95% Cl Andruli, 2010 5.3 1.78 9 7 2.4 10 10.1% -0.76 [-1.70, 0.18] Panichi, 2011 9.3 1.7 54 10.2 1.8 54 30.6% -0.51 [-0.89, -0.13] Sanaka, 2013 1.2 1.2 7.4 1.2 1.1 67 34.1% 0.00 [-0.33, 0.33] Sanaka, 2013 1 0.7 40 1.4 0.8 32 25.2% -0.53 [-1.00, -0.06] Total (95% Cl) 177 163 100.0% -0.37 [-0.70, -0.03] -0.37 [-0.70, -0.03] Heterogeneity: Tau ² = 0.06; Chi ² = 6.15, d.f = 3 (p = 0.10); l ² = 51% 51% -0.37 [-0.70, -0.03] -0.37 [-0.70, -0.03]									i di da di si
Vitamin-E filter Conventional filter Std. Mean Std. Mean Std. Mean difference Std. Mean difference N, random, 95% Cl Std. Mean Mean Std. Mean Std. Mean Mean Std. Mean Std. Mean Mean Mean Std. Mean Mean Mean Std. Mean Mean Mean Std. Mean									(vitamin-E filter) (conventional)
Vitamin-E filter Conventional filter Std. Mean Std. Mean difference Std. Mean Std. Mean difference N, random, 95% Cl Std. Mean Mean Std. Mean Std. Mean Mean Std. Mean Mean Std. Mean Std. Mean Mean Mean Std. Mean Mean Mean Std. Mean									
Study or subgroup Mean SD Total Weight IV, random, 95% CI Andrulli, 2010 5.3 1.78 9 7 2.4 10 10.1% -0.76 [-1.70, 0.18] Panichi, 2011 9.3 1.7 54 10.2 1.8 54 30.6% -0.51 [-0.89, -0.13] Sanaka, 2013 1.2 1.2 74 1.2 1.1 67 34.1% 0.00 [-0.33, 0.33] Sanaka, 2013 1 0.7 40 1.4 0.8 32 25.2% -0.53 [-1.00, -0.06] Total (95% CI) 177 163 100.0% -0.37 [-0.70, -0.03]	Vita	min-E filt	er	Conven	tional filt	er		Std Maan difference	Std Moon difference
Panichi, 2011 9.3 1.7 54 10.2 1.8 54 30.6% -0.51 [-0.89, -0.13] Sanaka, 2013 1.2 1.2 74 1.2 1.1 67 34.1% 0.00 [-0.33, 0.33] Sanaka, 2013 1 0.7 40 1.4 0.8 32 25.2% -0.53 [-1.00, -0.06] Total (95% CI) 177 163 100.0% -0.37 [-0.70, -0.03] Heterogeneity: Tau ² = 0.06; Chi ² = 6.15, d.f = 3 (p = 0.10); l ² = 51% -0.37 [-0.70, -0.03]	Mean	SD	Total	Mean	SD	Total	Weight		
Sanaka, 2013 1.2 1.2 74 1.2 1.1 67 34.1% 0.00 [-0.33, 0.33] Sanaka, 2013 1 0.7 40 1.4 0.8 32 25.2% -0.53 [-1.00, -0.06] Total (95% CI) 177 163 100.0% -0.37 [-0.70, -0.03]	5.3	1.78	9	7	2.4	10	10.1%	-0.76 [-1.70, 0.18]	
Sanaka, 2013 1 0.7 40 1.4 0.8 32 25.2% -0.53 [-1.00, -0.06] Total (95% CI) 177 163 100.0% -0.37 [-0.70, -0.03] Heterogeneity: Tau ² = 0.06; Chi ² = 6.15, d.f = 3 (p = 0.10); l ² = 51%	9.3	1.7	54	10.2	1.8	54	30.6%	-0.51 [-0.89, -0.13]	
Sanaka, 2013 1 0.7 40 1.4 0.8 32 25.2% -0.53 [-1.00, -0.06] Total (95% CI) 177 163 100.0% -0.37 [-0.70, -0.03] Heterogeneity: Tau ² = 0.06; Chi ² = 6.15, d.f = 3 (p = 0.10); l ² = 51%	1.2	1.2	74	1.2	1.1	67	34.1%	0.00 [-0.33, 0.33]	
Heterogeneity: Tau ² = 0.06; Chi ² = 6.15, d.f. = 3 (p = 0.10); l ² = 51%	1	0.7	40	1.4	0.8	32	25.2%		
							100.00/		
			177		1	63	100.0%	-0.37 [-0.70, -0.03]	
	0.06; Ch		d.f. = 3	3 (p = 0.1			100.0%	-0.37 [-0.70, -0.03]	-1 -0.5 0 0.5 1 Favours Favours
Sanaka, 2013 Total (95% Cl) Heterogeneity: Tau ² =		Mean 0.38 3,750 101 111.7 4,630 133.8 4,690 71.4 95.1 8,250 88 6,563 4,235 104 6,983 6,390 0.05; Ch Z = 1.01 Vita Mean 5.3	Mean SD 0.38 0.19 3,750 629.1 101 57 111.7 66.3 4,630 2,620 133.8 93.8 4,690 1,922 71.4 31.3 95.1 2,653 2,6563 2,459 4,235 3,103 104 65 6,983 5,679 6.390 5,679 0.05; Chi² = 22.1! 2 = 1.01 (p = 0.31) Vitamin-E filt Mean Mean SD 5.3 1.78	Mean SD Total 0.38 0.19 7 3,750 629.1 8 101 57 8 111.7 66.3 8 4,630 2,620 10 133.8 93.8 9 4,690 1,922 10 71.4 31.3 10 95.1 26.3 10 8,250 3,175.4 11 88 22 16 6,563 2,459 16 6,563 2,459 16 6,390 5,679 5,4 6,390 5,679 172 404 0.05; Chi² = 22.15, d.f. = 2 2 = 1.01 (p = 0.31) 1 Vitamin-E filter Mean SD Total 5.3 1.78 9	Mean SD Total Mean 0.38 0.19 7 0.5 3,750 629.1 8 4,250 101 57 8 135 111.7 66.3 8 104.4 4,630 2,620 10 7,850 133.8 93.8 9 136.3 4,690 1,922 10 5,740 71.4 31.3 10 75.9 95.1 26.3 10 97.4 8,250 3,175.4 11 7,000 88 22 16 72 6,563 2,459 16 5,143 104 65 38 104 6,983 5,679 54 6,983 6,390 5,679 172 7,762 404 0.05; Chi² = 22.15, d.f. = 15 (p = Z = 1.01 (p = 0.31) 5 1 Vitamin-E filter Convent Mean 5.3 1.78 9	Mean SD Total Mean SD 0.38 0.19 7 0.5 0.3 3,750 629.1 8 4,250 453.1 101 57 8 135 59 111.7 66.3 8 104.4 61.3 4,630 2,620 10 7,850 4,069 133.8 93.8 9 136.3 84.8 4,690 1,922 10 5,740 3,341 71.4 31.3 10 75.9 43.3 95.1 26.3 10 7,42 2.83 8,250 3,175.4 11 7,000 2.309.4 8.8 2.2 16 7.2 15 6,563 2,459 16 7,18 2,190 104 65 38 104 65 6,390 5,679 172 7,762 5,865 404 50.5 5,679 144 65 <	$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$

ERI

Fig. 4. a, b Effects of ViE-m vs. conventional membrane on EPO dosage.

EVODIAL

MEMBRANA – HEPRAN, AN96 ST

COPOLIMERO DI ACRILONITRILE E SODIO METIL SULFONATO -POLIETILENEIMINA - EPARINA

Dialyzer Performance During HD Without Systemic Anticoagulation Using a Heparin-Grafted Dialyzer and Citrate-Enriched Dialysate

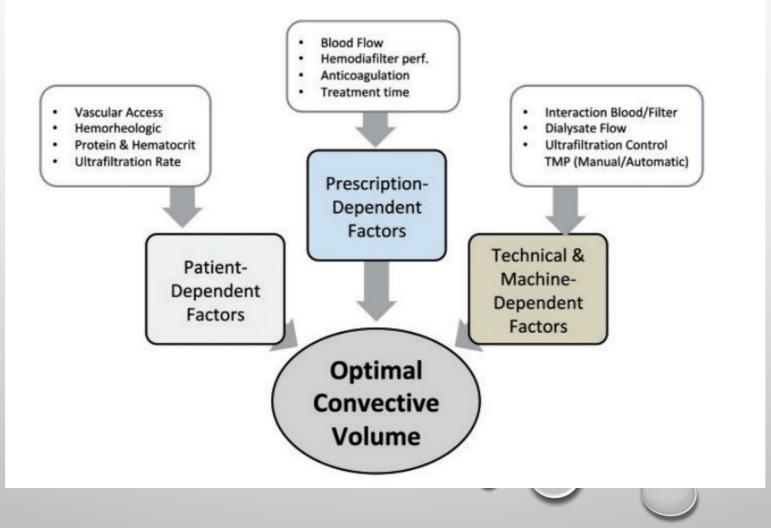
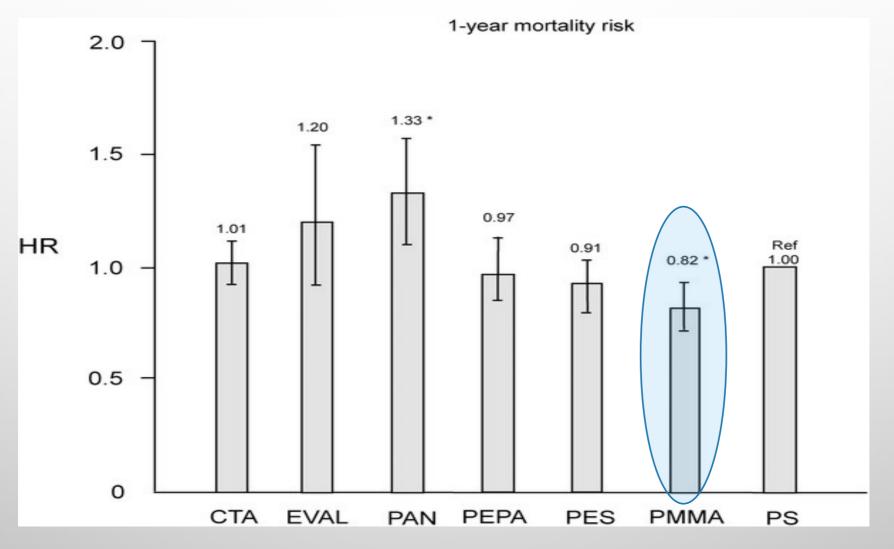
Results			
	EVOCIT	EVOHEP	
Kt/V _{urea}	1.47 ± 0.05	1.5 ± 0.05	
	10% noninferiority margin: -0.15 △(95% CI): -0.03 (-0.06 to -0.00		
Online Kt (L)	47.1 ± 0.6	48.0 ± 0.5	
No. of shortened treatments	13/307	0/310	
Treatment time (min)	236 ± 5	238 ± 1	
Thrombin-antithrombin complex (µg/L)	35 (25-45)	11 (5-20)	
Dialyzer blood compartment volume (mL)	77 ± 12	88 ± 8	
	Kt/V _{urea} Online Kt (L) No. of shortened treatments Treatment time (min) Thrombin-antithrombin complex (µg/L) Dialyzer blood compartment	EVOCITKt/V urea 1.47 ± 0.05 10% noninferiority $\triangle(95\%$ Cl): -0.03 (-Online Kt (L) 47.1 ± 0.6 No. of shortened treatments $13/307$ Treatment time (min) 236 ± 5 Thrombin-antithrombin complex (µg/L) $35 (25-45)$ Dialyzer blood compartment 77 ± 12	

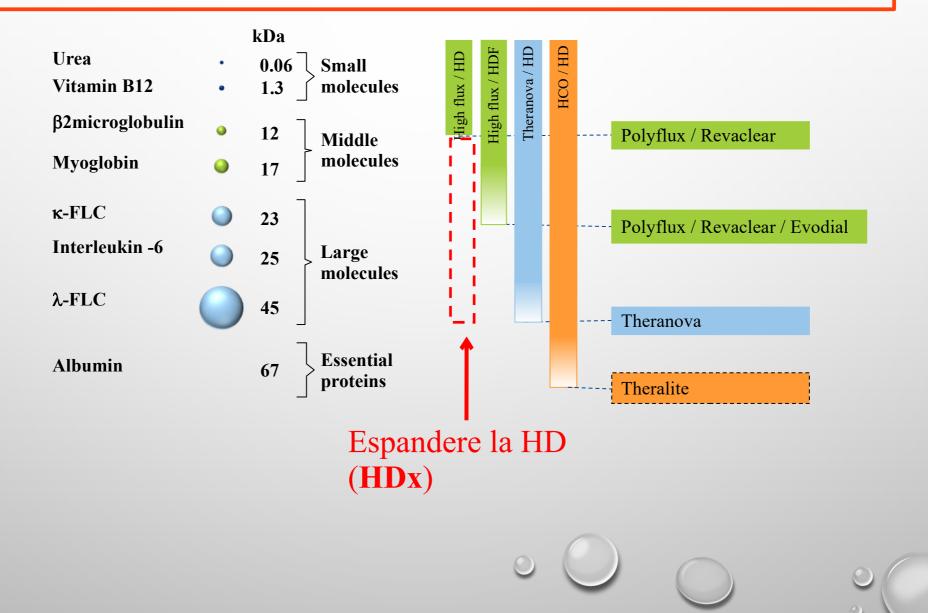
CONCLUSION: EvoCit is noninferior to EvoHep for solute clearance but results in more shortened treatments, membrane clotting, and thrombin generation.

Karlien François, Dieter De Clerck, Annelles Tonnelier , et al (2021)

@AJKDonline | DOI: 10.1053/j.ajkd.2020.04.004

Bernard Canaud^{1,2}, Katrin Köhler¹, Jan-Michael Sichart³ and Stefan Möller³


FIG 3. HRS OF ALL-CAUSE MORTALITY AFTER PROPENSITY SCORE MATCHING FOR SIX TYPES OF DIALYZER GROUPS COMPARED TO THE PS GROUP USING COX PROPORTIONAL HAZARDS REGRESSION.

Abe M, Hamano T, Wada A, Nakai S, Masakane I, et al. (2017) Effect of dialyzer membrane materials on survival in chronic hemodialysis patients: Results from the annual survey of the Japanese Nationwide Dialysis Registry. PLOS ONE 12(9): e0184424. https://doi.org/10.1371/journal.pone.0184424

os://journals.plos.org/plosone/article?id=10.1371/journal.pone.0184424

Approccio qualitativo alla depurazione delle medie molecole: il ruolo di metodiche e di membrane dialitiche

